
Juniper: A Functional Reactive
Programming Language for the Arduino

Caleb Helbling
Tufts University, Medford, MA, USA

caleb.helbling@gmail.com

Samuel Z Guyer
Tufts University, Medford, MA, USA

sguyer@cs.tufts.edu

Abstract
This paper presents the design and implementation of Juniper:
a functional reactive programming language (FRP) targeting the
Arduino and related microcontroller systems. Juniper provides a
number of high level features, including parametric polymorphic
functions, anonymous functions, automatic memory management,
and immutable data structures. Also included is a standard library
which offers many useful FRP signal processing functions. Ju-
niper is translated to standard C++ and compiled with the exist-
ing Arduino development tools, allowing Juniper programs to fit
on resource-constrained devices, and enabling seamless interoper-
ability with existing C++ libraries for these devices.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Control structures; D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

General Terms Languages, Design

Keywords functional reactive programming, Arduino, microcon-
troller, embedded systems

1. Introduction
The maker movement is an umbrella term encompassing the con-
vergence of designer, artisan and hacker cultures. This “do it your-
self” or “do it together” movement emphasizes the use of electron-
ics, 3D printing, robotics, and other fabrication methods in the pur-
suit of creative and artistic endeavors [7].

The Arduino has become a popular platform for the maker
movement since its release in 2005. It consists of a basic micro-
controller (often an Atmel 32X processor) mounted on a PCB that
provides power, a USB interface, and access to the processor’s in-
put/output pins. Arduino boards can be bought for just a few dol-
lars each, use very little power, and can be made small enough for
portable and wearable applications. The downside is that they have
very limited resources: typically, 32 KB of flash memory for the
program and 2 KB of RAM for both the stack and heap. These
limitations place significant constraints on how the boards are pro-
grammed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FARM’16,, September 18-22, 2016, Nara, Japan.
Copyright c© 2016 ACM 978-1-4503-4432-6/16/09. . . $15.00.
http://dx.doi.org/10.1145/2975980.2975982

Arduino development takes place in a special IDE that runs
on an ordinary desktop or laptop computer. The IDE is based
on Processing, and it provides an editor, a compiler, and tools to
upload binaries to the Arduino boards. The Arduino website makes
bold claims about the usability of this environment:

Simple, clear programming environment - The Arduino
Software (IDE) is easy-to-use for beginners, yet flexible
enough for advanced users to take advantage of as well.
For teachers, it’s conveniently based on the Processing pro-
gramming environment, so students learning to program in
that environment will be familiar with how the Arduino IDE
works [1].

The reality is not so nice. Due to the memory constraints there is
no operating system, and only minimal runtime support (mostly
libraries for specific sensors and actuators). Programs are written
in C/C++ and run directly on the bare metal. Debugging support is
almost non-existent.

void blink(int pin, int interval) {
digitalWrite(pin, HIGH);
delay(interval);
digitalWrite(pin, LOW);
delay(interval);

}
void loop() {

blink(13, 1000); // Blink pin 13 every 1s
}

Figure 1. Basic Arduino program to blink an LED

Nevertheless, many simple programs are easy to write. Figure 1
shows an Arduino program that blinks an LED on and off every sec-
ond. Unfortunately, more complex behavior is much more difficult
to code. Consider the relatively simple goal of blinking two lights
at different intervals. The obvious code, shown in Figure 2, does
not work. Suddenly, we need to use a totally different style of pro-
gramming in which we keep track of time explicitly, and schedule
events (light on, light off) at the appropriate times. The correct code
for this program is shown in Figure 3. Aside from being ugly and
confusing, this code highlights one of the primary problems with
Arduino programming: there is no good support for concurrency.

void loop() {
// -- This doesn’t work:
blink(13, 1000); // Blink pin 13 every 1s
blink(9, 700); // Blink pin 9 ever .7s

}

Figure 2. Timing-dependent behaviors cannot be composed.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FARM’16, September 24, 2016, Nara, Japan
c© 2016 ACM. 978-1-4503-4432-6/16/09...

http://dx.doi.org/10.1145/2975980.2975982

8

In this paper we present a new language, Juniper, for programming
Arduinos and similar microcontrollers. We leverage the observation
that many Arduino programs are reactive: they respond to incoming
signals, process those signals, and generate new output signals.
Using the existing C++ environment, these programs quickly turn
into “spaghetti” code that lacks modularity and is difficult to reason
about. Juniper solves this problem by using functional reactive
programming (FRP) [5]. In FRP, the program reacts to events by
propagating values along signals or behaviors in a directed graph.
Signals and behaviors can be thought of as time varying values
in the program. Nodes in the directed graph represent functions
which map signals to new signals. Independent parts of the signal
graph can run asynchronously, providing concurrency without any
additional work by the programmer. Higher-order functions, such
as map, fold, and filter, provide another level of expressive
power and reuse.

uint32_t last_time_1 = 0, last_time_2 = 0;
bool led_state_1 = false, led_state_2 = false;
void loop()
{

uint32_t curtime = millis();
if (curtime - last_time_1 > 1000) {

last_time_1 = curtime;
if (led_state_1) digitalWrite(13, LOW);
else digitalWrite(13, HIGH);
led_state_1 = ! led_state_1;

}
if (curtime - last_time_2 > 300) {

last_time_2 = curtime;
if (led_state_2) digitalWrite(9, LOW);
else digitalWrite(9, HIGH);
led_state_2 = ! led_state_2;

}
}

Figure 3. Asynchronous behavior leads to spaghetti code.

A major challenge for any language targeting the Arduino is
assuring that the compiled program and runtime system fit on the
device. A large part of our contribution, therefore, is a compiler
that translates Juniper programs into standard C++, which can
be compiled with the existing toolchain. No additional runtime
system is needed. The key idea in the compiler is to directly encode
the signal graph in the call graph of the resulting C++ program,
obviating the need for an explicit signal graph data structure at run
time.

We describe the following contributions:

• Juniper, a functional reactive programming language for pro-
gramming microcontrollers.

• The Juniper compiler, which translates Juniper programs into
compact C++ programs that will fit on an Arduino.

• Examples showing the benefits of programming in Juniper
rather than in the explicit C++ style.

2. A Simple Juniper Example
Figure 4 shows a Juniper program which turns a LED on and off
every second. In this basic example, the Juniper code seems to be
considerably more complex than the C++ version. This is only true
for simple projects. As project complexity increases, the C++ code
grows in complexity at a much faster rate than Juniper code. More
importantly, the Juniper code shown in Figure 4 is both composable
and reusable, while the C++ code is not.

In the main function of Figure 4, the setup function is called,
which sets up the built in LED for output. The Juniper program then

module Blink
open(Prelude, Io, Time)

let boardLed : int16 = 13
let tState : timerState ref = Time:state()
let ledState : pinState ref = ref low()

fun blink() : sig<pinState> = (
let timerSig = Time:every(1000, tState);
Signal:foldP<uint32, pinState>(

fn (currentTime : uint32,
lastState : pinState) : pinState ->

Io:toggle(lastState),
blinkState, timerSig)

)

fun setup() : unit =
Io:setPinMode(boardLed, Io:output())

fun main() : unit = (
setup();
while true do

Io:digOut(boardLed, blink())
end

)

Figure 4. Basic Juniper program to blink an LED

enters an infinite loop which outputs the signal returned by blink
to the board LED. The blink function creates a timer signal, along
which a timestamp value travels every 1000 milliseconds. This
signal is used as an input to the foldP function. foldP stands
for “fold over the past”. The lambda passed to foldP takes in
the value it previously returned along with the value on the input
signal. This is a stateful operation, so a reference is used to store
values between calls to the foldP function. The implementation for
foldP can be seen in Figure 11. The pinState type has two value
constructors: Io:low() and Io:high(). The Io:toggle function
toggles between these two value constructors. The final result of the
blink function is then a signal of type sig<pinState>.

As a more complex example, consider a project where a push-
button is used to toggle a blinking LED on and off. Figure 5 shows
a C++ function that we would like to reuse for this project. Un-
fortunately, attempting to simply call the functions defined in Fig-
ures 1 and 5 results in a broken program. If the pushbutton is held
down, the LED will fail to blink since the program is stuck in the
isPressed function. If the button is pushed while the program is
in the blink function, the press will fail to register.

Figure 6 shows a Juniper function that we would like to reuse for
this project. Calling the functions defined in Figures 4 and 6 results
in a working program, as shown in Figure 8. The program takes the
two signals created by the functions and maps them together using
map2 (this is equivalent to zipping and then mapping the signals).
This signal is passed to the digOut function, which sets the output
pin when it receives a value on the signal.

3. Language Syntax and Semantics
Juniper is in the ML family of languages. Its syntax and semantics
most closely match that of F#. Juniper includes typical ML family
features, such as algebraic datatypes, polymorphic functions, muta-
ble references, pattern matching and more. Unlike other ML family
languages, Juniper is not white space sensitive. See Figure 18 in the
appendix to view the full language grammar.

9

bool isPressed(int pin) {
// Debounce the button
// - Look for press
if (digitalRead(pin) == HIGH) {
// -- Wait 50ms
delay(50);
// -- Still pressed? OK, continue
if (digitalRead(pin) == HIGH) {

while (digitalRead(pin) != LOW) { }
return true;

}
}
return false;

}

Figure 5. This C++ function implements button debouncing. The
function returns true when the button is pressed, and false other-
wise.

type mode = on | off
let bState : buttonState ref = Button:state()
let edgeState : pinState ref = ref Io:low()
let modeState : mode ref = ref on()

fun button() : sig<mode> = (
let buttonSig = Io:digIn(buttonPin);
let debouncedSig = Button:debounce(buttonSig,

bState);
let edgeSig = Io:fallingEdge(debouncedSig,

edgeState);
Signal:toggle<mode>(on(), off(), modeState,
edgeSig)

)

Figure 6. This Juniper function implements button debouncing.
The function returns a signal which toggles between on and off
when the button is pressed.

...
void loop() {

if (isPressed(buttonPin)) {
if (!ledOn) {

ledOn = true;
} else {

ledOn = false;
}

}
if (ledOn) {
blink(13, 1000);

}
}

Figure 7. Attempting to reuse the code in Figure 1 and Figure 5
results in a broken program.

let ledSigState : (mode * pinState) ref =
ref (!modeState, !blinkState)

fun main() : unit = (
setup();
while true do (

let modeSig = button();
let blinkSig = blink();
let ledSig =
Signal:map2<mode, pinState, pinState>(

fn (modeVal : mode,
blinkVal : pinState) : pinState ->

case modeVal of
| on() => blinkVal
| off() => Io:low()
end,

modeSig, blinkSig, ledSigState);
Io:digOut(ledPin, ledSig)

) end
)

Figure 8. Attempting to reuse the code in Figure 4 and Figure
6 results in a working program. Unlike C++ programs, Juniper
programs are reusable and composable.

4. Functional Reactive Programming
There are many different styles of functional reactive program-
ming, some of which are infeasible given the constraints of the
Arduino programming environment. Functional reactive program-
ming languages revolve around the creation and use of a directed
graph to control the flow of events through the program. The def-
inition of different FRP styles is not always clear, so classification
is not straightforward.

Different approaches to functional reactive programming give
rise to a number of different properties. Signals or behaviors may
be represented as continuous streams of values or as a discrete
stream of values. History sensitivity is another important property.
The traditional FRP language Fran [6] suffered from memory leak
issues since a signal could depend on any past, present or future
value. Thus all past signal values would have to be kept just in case
they were needed in the future, resulting in unbounded memory
usage. Since the typical Arduino has only 2 KB of RAM, retaining
a complete history of the signal graph is infeasible.

Arrowized FRP attempts to maintain the expressiveness of tra-
ditional FRP languages while eliminating the memory leak prob-
lem [10]. Instead of having direct access to signals, programmers
use a set of signal functions as the basic building blocks of their
programs. Signals in arrowized FRP are not first class citizens. Ar-
rowized FRP languages are very similar to higher-order data flow
programming languages.

First-order FRP languages such as Elm, Real-time FRP, and
Event-driven FRP have static signal graphs [3]. In the Elm pro-
gramming language, the signal graph is constructed at run-time by
passing signal values to signal processing functions. Elm is at least
as expressive as arrowized FRP since arrowized FRP can be embed-
ded in the language [4]. Signals in Elm are not first class citizens.

Juniper combines several of the concepts discussed. The style
of Juniper programs is most like that of Elm. Many of the basic
Juniper signal processing functions have direct Elm equivalents.
Unlike Elm, the signal graph in Juniper is not static. Signals in
Juniper are first class citizens, and the language supports higher-
order signals. One issue with dynamic signal graphs is how to
handle signals that are not being listened to (although they might
in the future). If we want to support full equational reasoning the
system needs to record all historical values of these signals, which

10

is not practical for small devices, like the Arduino [9]. Instead, we
choose a pragmatic solution: signals that are not being listened to
are not processed, and their values are lost. Use of this construct is
rare, however, and programmers can always save past signal values
explicitly to control memory use.

At any specific point in time, a signal may or may not have an
event traveling along it. This leads to the very simple definition of a
signal, as shown in Figure 9. Since sig can be written as a type, just

type maybe<’a> = just of ’a
| nothing

type sig<’a> = signal of maybe<’a>

Figure 9. The definition of signals as defined in the Juniper stan-
dard library Prelude module. The sig type is very similar to the
Event type in Fran.

like any other in the Juniper language, it is considered a first class
entity. Furthermore, signal processing functions can be written in
ordinary Juniper code. The signal graph in a Juniper program is
then encoded in the call graph of the program.

Basic signal processing functions such as map can be easily
written in the Juniper programming language (see Figure 10).

foldP is a stateful signal processing function in Juniper. The
foldP function uses a mutable reference to store state in-between
function invocations. foldP stands for “fold over the past” and acts
much like the traditional fold functions used for lists. Each event
received on the signal will be used to update the reference, and the
outgoing signal represents the current state. The foldP function is
often used for state machine transition tables.

Figure 12 shows the code for several commonly used Juniper
functions. The latch function remembers the last event received
on the incoming signal and constantly outputs the latest value. The
latch function also uses a mutable reference to store the latest
value. Clearing the state of an output device before beginning a
new step or frame is a common programming pattern in computer
graphics and also in Arduino programming. The latch function is
useful in this situation, since it guarantees that a value will be in the
signal for every frame.

The meta function takes in a signal and outputs a signal which
contains information about the incoming signal. The output signal
holds a value of nothing if there was no value on the incoming
signal. In the case where there was a value on the incoming signal,
the output signal holds just the value on the incoming signal. A
corresponding unmeta function has also been written. Like the
latch function, the meta function is useful in the use case where a
value on a signal is required for every step. Many signal processing
functions, including the ones presented here, are available for reuse
in the Juniper standard library.

5. Interacting with C++ Libraries
Seamless interoperability with existing C++ libraries is critical
for the success of a language targeting the Arduino programming
environment. The libraries controlling every sensor, actuator, and
other output devices hooked to an Arduino are written in C++. If a
C++ library needs to be used, a Juniper wrapper module should be
written around the library.

Since Juniper compiles to C++, the language allows C++ code
to be written inline wherever an expression can be written. After
compilation, inline C++ code is wrapped inside of an immediately
invoked function, which means it is impossible to introduce vari-
ables into the current function scope. The return value of the func-
tion is Prelude::unit, meaning that the return value of any inline

fun map<’a,’b>(f : (’a) -> ’b,
s : sig<’a>) : sig<’b> =

case s of
| signal<’a>(just<’a>(val)) =>

signal<’b>(just<’b>(f(val)))
| _ =>

signal<’b>(nothing<’b>())
end

Figure 10. The map function as defined in the Signal module. No-
tice that it is isomorphic to Haskell’s fmap function in the Maybe
functor. See Figure 17 for the compiled C++ version of this func-
tion.

fun foldP<’a, ’state>(f : (’a,’state)->’state,
state0 : ’state ref,
incoming : sig<’a>)

: sig<’state> =
case incoming of
| signal<’a>(just<’a>(val)) =>

(let state1 = f(val, !state0);
set ref state0 = state1;
signal<’state>(just<’state>(state1)))

| _ =>
signal<’state>(nothing<’state>())

end

Figure 11. The foldP function as defined in the Signal module.

fun latch<’a>(incoming : sig<’a>,
prevValue : ’a ref) : sig<’a> =

case incoming of
| signal<’a>(just<’a>(val)) =>

(set ref prevValue = val;
incoming)

| _ =>
signal<’a>(just<’a>(!prevValue))

end

fun constant<’a>(val : ’a) : sig<’a> =
signal<’a>(just<’a>(val))

fun meta<’a>(sigA : sig<’a>) : sig<maybe<’a>> = (
let signal<’a>(val) = sigA;
constant<maybe<’a>>(val)

)

fun unmeta<’a>(sigA : sig<maybe<’a>>) : sig<’a> =
case sigA of
| signal<maybe<’a>>(

just<maybe<’a>>(
just<’a>(val))) =>
constant<’a>(val)

| _ =>
signal<’a>(nothing<’a>())

end

Figure 12. Interesting and commonly used signal functions as
defined in the Signal module.

11

Figure 13. The digital hourglass in finale mode.

C++ code is unit. Inline C++ code is written between two hashtag
symbols.

#Insert your C++ code here#

In Juniper wrappers, the pointer type is used to point to a
memory location. This pointer type is actually a C++ smart pointer
object. The smart pointer keeps track of the number of references to
the C++ object, and automatically frees the memory when there are
no more references to it. Internally, the smart pointer keeps track of
the C++ object by using a void * pointer. This means that manual
typecasts must be used when interacting with the smart pointer in
C++ code.

The null expression is used to create a new smart pointer.

let p : pointer = null

At this point p is a variable of type pointer, which after compilation
will be the juniper::shared ptr<void> C++ type. The null
keyword indicates that the smart pointer is currently pointing to the
C++ value NULL. One can change what the smart pointer is pointing
to by using the set method of the shared ptr C++ class. The set
method simply takes a single parameter of type void *.

#p.set((void *) new MyClass(...));#

To access the contents of the smart pointer, the get method of the
juniper::shared ptr class can be used. The get method takes
in no parameters and returns the pointer as the C++ type void *.
One then interacts with the object by casting it to the proper type.

#((MyClass *) p.get())-> ... ;#

Juniper performs no name mangling of variable names, type names,
or function names. This means that inline C++ can safely use these
entities without restriction. For example, we can retrieve an integer
stored in MyClass by using the following code:

(let mutable x : int32 = 0;
#x = ((MyClass *) p.get())->getX();#;
x)

The include declaration allows the header files from C++ li-
braries to be included into the output C++ file.

include("<header1.h>","\"header2.h\"",...)

6. Case Study: Digital Hourglass
Figure 13 shows a picture of the digital hourglass, an Arduino
project with a rich set of behaviors. The hourglass has four main
modes:

type mode = setting | timing | paused | finale
type flip = flipUp | flipDown | flipFlat
fun main() : unit = (
setup();
while true do (

clearDisplay();
let accSig =
Signal:dropRepeats<orientation>(

Accelerometer:getSignal(), accState);
let flipSig =
Signal:map<orientation, flip>(

fn (o : orientation) : flip ->
case o of
| Accelerometer:xUp() => flipUp()
| Accelerometer:xDown() => flipDown()
| _ => flipFlat()
end, accSig);

let metaFlipSig = Signal:meta<flip>(flipSig);
let modeSig =
Signal:foldP<maybe<flip>, mode>(

fn (maybeFlipEvent : maybe<flip>,
prevMode : mode) : mode ->

if (prevMode == timing()) and
(!timeRemaining <= 0) then

finale()
else
case maybeFlipEvent of
| just<flip>(flipEvent : flip) =>

case (flipEvent, prevMode) of
| (flipUp(), setting()) => (

set ref totalTime =
!timeRemaining;
Timing:reset();
timing())

| (flipUp(), paused()) => timing()
| (flipDown(), timing()) =>

(Setting:reset(timeRemaining);
setting())

| (flipDown(), paused()) =>
(Setting:reset(timeRemaining);
setting())

| (flipDown(), finale()) =>
(Setting:reset(timeRemaining);
setting())

| (flipFlat(), timing()) => paused()
| _ => prevMode
end

| _ =>
prevMode

end
end, modeState, metaFlipSig);

Signal:sink<mode>(fn (m : mode) : unit ->
case m of
| setting() => Setting:execute(timeRemaining)
| timing() => Timing:execute(timeRemaining,

!totalTime)
| paused() => Paused:execute(timeRemaining,

!totalTime)
| finale() => Finale:execute()
end, modeSig);

FastLed:show()
) end

)

Figure 14. The core of the digital hourglass program

12

• Program Mode: The user taps a capacitive button to set the
amount of time. Tapping the button once adds 15 seconds to the
timer. The amount of time set is visualized by lighting up the
LEDs. A blue LED is equivalent to 1 minute of time, while a
pink LED is equivalent to 15 seconds of time. A blinking cursor
is also shown, which moves as the hourglass “fills up”.

• Timing Mode: When the user flips the hourglass upside down
while in program mode, the hourglass transitions to timing
mode. In timing mode, the hourglass visualizes the time remain-
ing via the LEDs and falling “grains of sand”. The LEDs are lit
up in a gradient of red fading to green.

• Pause Mode: When the user turns the hourglass on its side,
the hourglass enters pause mode. The time remaining does not
decrease in pause mode, as indicated by the pulsing LEDs.

• Finale Mode: After the time is up, the hourglass enters finale
mode, in which the LEDs are lit up and animated using a
sinusoidal function.

Figure 14 shows the core Juniper code for the digital hourglass
project. Most Juniper programs are structured very similarly to this
project. Inside the main function, the setup function is called which
initializes pins for IO, initializes libraries, etc. Then the program
enters an infinite loop and clears the display. The accelerometer
signal is retrieved and passed to dropRepeats, which ensures that
only changes in the accelerometer orientation are propagated. The
program maps this signal which holds the correct flip event based
on the accelerometer orientation.

Since the display must be redrawn every frame, the sink event
must receive an event every frame (the drawing occurs in the
execute functions). In addition, if the time remaining reaches
zero, the state machine should transition to finale mode. This means
that the foldP also needs to receive an event every frame. To
achieve both of these goals, the meta function (see Figure 12 for
the implementation) is used to ensure that an event is propagated
every frame, in addition to holding the relevant information.

The foldP function is used for the state machine transition
table. Based on the previous state, flip event, and remaining time,
the program determines the next machine state. The state machine
output signal is passed to the sink function, which determines
which part of the signal graph should be executed next.

In addition to the Juniper program, an equivalent C++ program
was also written. The C++ code is considerably more complex,
and includes gnarly timing and scheduling logic. The Juniper code
makes use of reusable higher order signal processing functions,
which drastically decreased code complexity in comparison. The
C++ code is 946 lines long, while the Juniper code is only 346
lines long (a reduction of 63%). The compiled binary code size is
14 KB and 23 KB for C++ and Juniper respectively.

7. Compilation
Compilation of a Juniper program is a fairly straightforward pro-
cess. Programmers write in .jun files, which holds the code for
a single module. To facilitate writing Juniper code, a syntax color-
ing plugin has been written for the Atom text editor. These modules
are then passed to the compiler, which also includes the standard li-
brary modules. The code is parsed, typechecked, and then compiled
to a single C++ .cpp file. This C++ file is taken by the programmer
who compiles and uploads it to the Arduino. The Juniper compiler
is written in F# and is available for multiple platforms.

The storage and runtime components of the directed signal
graph must be taken into consideration. Creating the signal graph
at runtime by constructing a directed graph data structure would
consume extremely scarce memory resources. The programming
language Hume [8], which also targets embedded systems, avoids

template<typename a>
struct sig {
uint8_t tag;
bool operator==(sig rhs) {...}
bool operator!=(sig rhs) {...}
union {

Prelude::maybe<a> signal;
};

};

template<typename a>
sig<a> signal(Prelude::maybe<a> data) {
return (([&]() -> sig<a> {

sig<a> ret;
ret.tag = 0;
ret.signal = data;
return ret;

})());
}

Figure 15. Compiled type definition of sig (see Figure 9) along
with the signal value constructor.

(([&]() -> Prelude::unit {
while (...) {

...
}
return {};

})());

Figure 16. Compiled while loop which uses the immediately in-
voked lambda trick.

this problem by using a multi-level domain specific language to
construct the signal graph at compile time. This is typically the
approach used by FRP embedded systems languages. Juniper takes
a different approach; the signal graph is encoded directly in the
call graph of the program. This allows a considerable amount of
flexibility in selective runtime reconfiguration of the signal graph.
As an added bonus, the signal graph information is stored in the
much larger program memory space (32 KB) instead of the RAM
(2 KB).

Juniper expressions and declarations are mapped directly to
their C++ equivalent. For example, algebraic data types are com-
piled to a C++ struct and union, and Juniper templates are com-
piled to C++ templates (see Figure 15). Some Juniper expressions
do not have equivalent C++ expressions. For example, the Juniper
while loop is an expression which returns type unit, while the
C++ while loop is a statement. To turn the C++ while loop into an
expression, the compiler wraps the while loop in an immediately
invoked lambda which has a return type of Prelude::unit (see
Figure 16). This immediately invoked lambda trick is commonly
used in compiled Juniper code. In practice, the compiler will inline
the C++ lambda so no performance penalty is incurred.

8. Memory Management
Memory allocated for references is managed by a reference count-
ing system. The reference counting system was chosen for its sim-
plicity, ease of implementation, and low overhead. Considering
both the limited program and RAM space, a tracing garbage collec-
tor has unacceptable overhead. There is a downside; if references
form a cyclic structure, their memory will not be freed, even if they

13

template<typename a, typename b>
Prelude::sig map(juniper::function<b(a)> f,

Prelude::sig<a> s) {
return (([&]() -> Prelude::sig {
Prelude::sig<a> guid771 = s;
return ((((guid771).tag == 0)

&& ((((guid771).signal).tag == 0) && true)) ?
(([&]() -> Prelude::sig {
auto val = ((guid771).signal).just;
return signal(just(f(val)));

})())
:

(true ?
(([&]() -> Prelude::sig {

return signal(nothing());
})())

:
juniper::quit<Prelude::sig>()));

})());
}

Figure 17. Compiled signal processing function map. See Figure
10 for the Juniper definition of this function.

are unreachable. We recommend that references only be used as
module level variables (which will always be reachable).

The size of arrays, lists, and other data structures must be known
at compile time. To achieve this, Juniper uses capacity variables, a
weak dependent type system. At compile time, capacity variables
and expressions are converted to C++ dependent integer types in
templates [13].

9. Future Work
The amount of memory available on embedded systems platforms
is usually very limited; the Arduino Uno has only 2 KB of RAM.
Ideally the compiler should be able to place an upper bound on
memory to ensure that the program will not crash. In the full
Juniper language, this is not possible since the language supports
references, closures and recursion. We plan to implement a strict
mode that will place an upper limit on memory usage at compile
time. In the strict subset of the language, references can only be
declared as module level variables, closures are not allowed, and
recursion must be tail-recursive. In the typical non-strict mode,
these will only be warnings.

Having to explicitly write out types everywhere is an annoying
aspect of the Juniper type system. We plan to migrate the type
checker to a more powerful type inference system. This will reduce
the cognitive overhead of keeping track of types while maintaining
full type safety.

10. Related Works
10.1 Elm
Elm [5] is a browser based functional language designed for creat-
ing graphical user interfaces. Recently Elm has moved away from
the FRP approach and now uses a subscription model. However,
the older versions of Elm were influential in the creation of Ju-
niper. Elm was a first-order FRP language capable of embedding
arrowized FRP. Juniper provides many of the signal processing fea-
tures that Elm provided. However, unlike Elm, Juniper provides
first class direct access to its signal type. This makes it easier to
interface with C++ libraries and allows the creation of novel signal
processing functions.

10.2 Real-Time FRP
Real-Time FRP (RT-FRP) [14] is another multilayer language that
provides an unrestricted base language in addition to a limited
reactive language The reactive language is used for manipulating
signals and supports recursion but not higher order functions. RT-
FRP guarantees that reactive updates will terminate as long as the
base language terminates and memory will not grow unless the base
language grows the memory. Like Elm, RT-FRP is classified as a
first-order FRP language.

10.3 Lustre, Esterel, and Signal
Lustre, Esterel, and Signal [2] are synchronous programming lan-
guages developed in the late 1980s. In the synchronous program-
ming paradigm, the program executes in discrete reaction steps. In
each reaction step, inputs are read and the program reacts by com-
puting the outputs in zero time. Parallel components of the program
are synchronized by the semantics of the language. Programs in
this paradigm are deterministic, predictable, and lend themselves to
formal verification. For these reasons, synchronous languages are
used for programming real time embedded systems that are safety-
critical. These languages lack expressiveness; for example they do
not support higher order functions or recursion. Theoretically, it is
possible to run these languages on the Arduino platform, although
there has been no organized effort to do so.

10.4 Hume and Emfrp
Hume [8] and Emfrp [12] are both functional reactive program-
ming languages designed to run on embedded systems. Both lan-
guages utilize a multilayer design to construct a static signal graph
at compile time. Boxes (Hume) and Nodes (Emfrp) are dataflow
processing components explicitly connected together. Both provide
upper bounds for memory usage. Juniper will also provide an upper
bound on memory usage after strict mode is implemented.

10.5 Céu
Céu [11] is a concurrent imperative programming language de-
signed for embedded systems. The language is strongly influenced
by Esterel. In Céu, multiple lines of execution known as trails react
to input events. If a trail is waiting for an event to occur, execution
of that trail halts until the event occurs.

10.6 occam-pi
occam-pi [15] is a parallel programming language based on the
occam language. The occam language was designed for program-
ming the Transputer, a pioneering highly parallel microprocessor
designed in 1980s. The occam-pi language supports concurrency
both on multiple processors and on single processors via time slic-
ing. occam-pi utilizes both the concurrent sequential processing
model and π-calculus. Communication between two different pro-
cesses is achieved by passing messages along point-to-point chan-
nels. Like Juniper, the occam-pi language supports programming
for the Arduino environment.

Acknowledgments
We would like to thank the Tufts University Summer Scholars
program for providing the funding for this research.

A. Appendix
〈module〉 ::= ‘module’ 〈id〉 {〈declaration〉};

〈declaration〉 ::= 〈open〉
| 〈export〉
| 〈record〉

14

| 〈algebraic-type〉
| 〈function〉
| 〈let〉
| 〈include〉

〈include〉 ::= ‘include’ ‘(’ [‘"’ 〈cpp-header-str〉 ‘"’ {‘,’ ‘"’
〈cpp-header-str〉 ‘"’ }] ‘)’

〈open〉 ::= ‘open’ ‘(’ [〈id〉 {‘,’ 〈id〉}] ‘)’

〈export〉 ::= ‘export’ ‘(’ [〈id〉 {‘,’ 〈id〉}] ‘)’

〈template-dec〉 ::= ‘<’ [‘’’ 〈id〉 {‘,’ ‘’’ 〈id〉}] [‘;’ 〈id〉 {‘,’ 〈id〉}]
‘>’

〈template-apply〉 ::= ‘<’ [〈ty-expr〉 {‘,’ 〈ty-expr〉}] [‘;’ 〈capacity-expr〉
{‘,’ 〈capacity-expr〉}] ‘>’

〈record〉 ::= ‘type’ 〈id〉 [〈template-dec〉] ‘=’ ‘{’ [〈id〉 ‘:’ 〈ty-expr〉
{‘;’ 〈id〉 ‘:’ 〈ty-expr〉}] ‘}’

〈algebraic-type〉 ::= ‘type’ 〈id〉 [〈template-dec〉] = 〈value-constructor〉
{‘|’ 〈value-constructor〉}

〈value-constructor〉 ::= 〈id〉
| 〈id〉 ‘of’ 〈ty-expr〉

〈let〉 ::= ‘let’ 〈id〉 ‘:’ 〈ty-expr〉 ‘=’ 〈expr〉

〈function〉 ::= ‘fun’ 〈id〉 [〈template-dec〉] ‘(’ [〈id〉 ‘:’ 〈ty-expr〉
{‘,’ 〈id〉 ‘:’ 〈ty-expr〉}] ‘)’ ‘:’ 〈ty-expr〉 ‘=’ 〈expr〉

〈declaration-ref 〉 ::= 〈id〉 | 〈module-qualifier〉

〈ty-expr〉 ::= 〈declaration-ref 〉 [〈template-apply〉]
| ‘(’ [〈ty-expr〉 {‘,’ 〈ty-expr〉}] ‘)’ ‘->’ 〈ty-expr〉
| 〈ty-expr〉 ‘[’ 〈capacity-expr〉 ‘]’
| 〈ty-expr〉 ‘ref’
| ‘(’ 〈ty-expr〉 ‘*’ 〈ty-expr〉 [{‘*’ 〈ty-expr〉}] ‘)’

〈capacity-expr〉 ::= 〈capacity-expr〉 〈capacity-op〉 〈capacity-expr〉
| 〈id〉
| 〈integer〉

〈capacity-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈module-qualifier〉 ::= 〈id〉 ‘:’ 〈id〉

〈expr-list〉 ::= 〈expr〉 {‘,’ 〈expr〉}

〈field-assign-list〉 ::= 〈id〉 ‘=’ 〈expr〉 {‘;’ 〈id〉 ‘=’ 〈expr〉}

〈expr〉 ::= ‘()’ | ‘true’ | ‘false’ | 〈number〉
| ‘(’ 〈expr〉 {‘;’ 〈expr〉} ‘)’
| ‘(’ 〈expr〉 ‘,’ 〈expr〉 [{‘,’ 〈expr〉}] ‘)’
| 〈expr〉 ‘(’ [〈expr-list〉] ‘)’
| 〈declaration-ref 〉 〈template-apply〉
| 〈expr〉 ‘[’ 〈expr〉 ‘]’
| 〈expr〉 〈binary-op〉 〈expr〉
| if 〈expr〉 ‘then’ 〈expr〉 [{‘elif’ 〈expr〉 ‘then’ 〈expr〉}]

‘else’ 〈expr〉 ‘end’
| ‘let’ 〈pattern〉 ‘=’ 〈expr〉
| ‘set’ 〈left-assign〉 ‘=’ 〈expr〉
| ‘set’ ‘ref’ 〈left-assign〉 ‘=’ 〈expr〉
| ‘for’ 〈id〉 ‘:’ 〈ty-expr〉 ‘in’ 〈expr〉 ‘to’ 〈expr〉 ‘do’ 〈expr〉

‘end’
| ‘for’ 〈id〉 ‘:’ 〈ty-expr〉 ‘in’ 〈expr〉 ‘downto’ 〈expr〉 ‘do’

〈expr〉 ‘end’

| ‘do’ 〈expr〉 ‘while’ 〈expr〉 ‘end’
| ‘while’ 〈expr〉 ‘do’ 〈expr〉 ‘end’
| 〈module-qualifier〉
| 〈id〉
| ‘not’ 〈expr〉
| ‘~~~’ 〈expr〉
| 〈expr〉 ‘.’ 〈id〉
| ‘fn’ ‘(’ [〈id〉 ‘:’ 〈ty-expr〉 {‘,’ 〈id〉 ‘:’ 〈ty-expr〉}] ‘)’ ‘:’

〈ty-expr〉 ‘->’ 〈expr〉
| ‘case’ 〈expr〉 ‘of’ ‘|’ 〈case-clause〉 {‘|’ 〈case-clause〉}

‘end’
| 〈declaration-ref 〉 [〈template-apply〉] ‘{’ [〈field-assign-list〉]

‘}’
| ‘[’ 〈expr-list〉 ‘]’
| ‘ref’ 〈expr〉
| ‘!’ 〈expr〉
| ‘array’ 〈ty-expr〉 ‘of’ 〈expr〉 ‘end’
| ‘array’ 〈ty-expr〉 ‘end’
| ‘#’ 〈inline-cpp〉 ‘#’;

〈binary-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘mod’ | ‘and’ | ‘or’ | ‘&&&’
| ‘|||’ | ‘>=’ | ‘<=’ | ‘>’ | ‘<’ | ‘==’ | ‘!=’ | ‘<<<’
| ‘>>>’;

〈left-assign〉 ::= 〈id〉
| 〈module-qualifier〉
| 〈left-assign〉 ‘[’ 〈expr〉 ‘]’
| 〈left-assign〉 ‘.’ 〈id〉;

〈case-clause〉 ::= 〈pattern〉 ‘=>’ 〈expr〉;

〈pattern〉 ::= [‘mutable’] 〈id〉 [‘:’ 〈ty-expr〉]
| 〈integer〉
| 〈float〉
| ‘_’
| 〈declaration-ref 〉 [〈template-apply〉] ‘(’ 〈pattern〉 ‘)’
| 〈ty-expr〉 ‘{’ [〈id〉 ‘=’ 〈pattern〉 {, 〈id〉 ‘=’ 〈pattern〉}] ‘}’
| ‘(’ 〈pattern〉 ‘,’ 〈pattern〉 {‘,’ 〈pattern〉} ‘)’;

Figure 18. Juniper grammar in Extended Backus-Naur Form

References
[1] Arduino - introduction. https://www.arduino.cc/en/Guide/

Introduction. Accessed: 2016-06-23.
[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guer-

nic, and R. De Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91(1):64–83, 2003.

[3] E. Czaplicki. Controlling Time and Space: understanding the many
formulations of FRP. Strange Loop.

[4] E. Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis,
Harvard University, 2012.

[5] E. Czaplicki and S. Chong. Asynchronous functional reactive pro-
gramming for GUIs. ACM SIGPLAN Notices, 48(6):411–422, 2013.

[6] C. Elliott and P. Hudak. Functional reactive animation. ACM SIG-
PLAN Notices, 32(8):263–273, 1997.

[7] A. Ghalim. Fabbing practices: An ethnography in Fab Lab Amster-
dam. Master diss., Universiteit van Amsterdam (New Media and Cul-
ture Studies), Amsterdam, The Netherlands., 2013.

[8] K. Hammond and G. Michaelson. The design of Hume: a high-level
language for the real-time embedded systems domain. In Domain-
Specific Program Generation, pages 127–142. Springer, 2004.

[9] N. R. Krishnaswami, N. Benton, and J. Hoffmann. Higher-order func-
tional reactive programming in bounded space. In Proceedings of the

15

ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, pages 45–58, 2012.

[10] P. Liu and P. Hudak. Plugging a space leak with an arrow. Electronic
Notes in Theoretical Computer Science, 193:29–45, Nov. 2007.

[11] F. Sant’Anna, N. Rodriguez, R. Ierusalimschy, O. Landsiedel, and
P. Tsigas. Safe system-level concurrency on resource-constrained
nodes. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, page 11. ACM, 2013.

[12] K. Sawada and T. Watanabe. Emfrp: a functional reactive program-
ming language for small-scale embedded systems. In Companion Pro-

ceedings of the 15th International Conference on Modularity, pages
36–44. ACM, 2016.

[13] B. Stroustrup. The C++ Programming Language. Addison-Wesley
Professional, 4th edition, 2013. ISBN 0-321-56384-0. Section 25.2.2.

[14] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. ACM SIGPLAN
Notices, 36(10):146–156, 2001.

[15] P. H. Welch and F. R. Barnes. Communicating mobile processes. In
Communicating Sequential Processes. The First 25 Years, pages 175–
210. Springer, 2005.

16

